### RANS, URANS and LES calculations through five by five mixing grids of nuclear fuel assembly

S. Benhamadouche (contributors: C. Le-Maître, P. Moussou, C. Bodel, L. Capone) 08 april 2013





### **Outlook**

□ Fuel assemblies issues

□ First LES through a 2x2 mixing grid – need for validation

□ LES/URANS through 5x5 mixing grid – KAERI grid

□ RANS simulations through a 5x5 mixing grid

Conclusions and perspectives

## **Fuel assemblies issues**



### **Fuel assemblies issues**

### □ Reliability and performance of Fuel assemblies in the core

**25** days of non-availability due to problems concerning the fuel assemblies (2008)

2 major problems



Fretting (vibrations)



### **Fuel assemblies issues**

### □Complex geometry

### Different Fuel Assembly models

Several producers

### □Many constraints

Low head loss

Good heat exchange

Low vibration

### 

Use Computational Fluid Dynamics (CFD) to obtain detailed flow structures

Validate by comparing CFD results with experiment when available/possible on some known configurations











$$\left(m_{add} + \frac{\lambda L}{2}\right)\frac{d^2 a_n}{dt^2} + \frac{n^4 \pi^4 EI}{2L^3}a_n = F_n(t)$$





- LES seems reliable, the qualitative results are satisfactory (displacement of few microns)
- Need for validation



DSP : comparison to experimental results (1<sup>st</sup> span)



Observation : RANS models underestimate the turbulent kinetic energy on this case





- □ KAERI experiment MATHIS-H (horizontal)
- Benchmark organized by OECD
- □ Split-type vane, 5x5 mixing grid, scale 2.67
- Few doubts about the symmetry of the configuration (the grid is too close to the outlet)



 $\Box$  Reynolds number Re<sub>H</sub>=50000 62 Million cells 











F

z = 0.5D<sub>H</sub>

 $z = 4D_{H}$ 



LES with a pure centered scheme is the only one showing a split-like vane behavior with the turbulent kinetic energy



□ This is a part of a benchmark organized by EPRI (Manivel experiment conducted at EDF)





Fully hex mesh



#### Main characteristics :





### □ 2 types of junctions between the two different grids :

conforming junction with mixed elements (hex, tets and pyramids
Non-conforming junction





Turbulent kinetic energy evolution

Code Saturne User Club - 09/04/2013



- □ Results with 2<sup>nd</sup> moment closure and a standard wall function with 1 velocity scale
- Global underestimation of the headloss coefficient except for the bare bundle
- □ Same results with the two types of junction



|      |       | RSM 1 | k-ε 2  | k-ε 1 | RSM 2  | kω-   |
|------|-------|-------|--------|-------|--------|-------|
|      | Exp   | scale | scales | scale | scales | SST   |
| DPM1 | 1,628 | 1,361 | 1,107  | 1,412 | 1,011  | 1,115 |
| DPM2 | 0,570 | 0,573 | 0,417  | 0,584 | 0,387  | 0,444 |
| DPM3 | 1,606 | 1,391 | 1,089  | 1,440 | 0,993  | 1,126 |
| DPM4 | 0,813 | 0,678 | 0,562  | 0,708 | 0,521  | 0,554 |
| DPM5 | 1,621 | 1,391 | 1,089  | 1,440 | 0,993  | 1,126 |
| DPM6 | 0,782 | 0,678 | 0,562  | 0,708 | 0,521  | 0,554 |

- □ Sensitivity to the turbulence model and wall functions
  - □ 1 scale results are closer to the experimental data
  - □ Is this phenomena due to the junctions?

With only simple grids (conforming mesh), the results concerning the under-estimation of the head-loss coefficient are worse! And there is still an underestimation with the wall function using 2 scales ...



### **Conclusions and perspectives**

- RANS does not seem adequate to predict the flow through mixing grids (neither for head-loss coefficient nor for turbulent kinetic energy level)
- URANS might be used (good qualitative behavior) but given an overestimation of the turbulent kinetic energy what is not suitable if one expects to study vibrations or heat transfer
- LES with a pure centered scheme and a dynamic Smagorinsky model gave the best quantitative results for the KAERI grid used during the OECD benchmark
- □ LES gave good qualitative behavior for vibration predictions
- More validation is still needed in particular concerning the pressure along the rods