

Outlook

- Fuel assemblies issues
- First LES through a 2×2 mixing grid - need for validation
- LES/URANS through 5×5 mixing grid - KAERI grid
- RANS simulations through a 5×5 mixing grid
- Conclusions and perspectives

Fuel assemblies issues

Mixing grid (17x17 tubes)

Fuel assembly

Fuel assemblies issues

Reliability and performance of Fuel assemblies in the core

- 25 days of non-availability due to problems concerning the fuel assemblies (2008)

2 major problems

Deformations

Fuel assemblies issues

-Complex geometry
-Different Fuel Assembly models
\square aseveral producers
\square Many constraints
-Low head loss
GGood heat exchange
-Low vibration
■Approach
-Use Computational Fluid Dynamics (CFD) to obtain detailed flow structures
\square Validate by comparing CFD results with experiment when available/possible on some known configurations

First LES through a 2×2 mixing grid

$>\mathrm{D}=9,5 \mathrm{~mm}, \mathrm{P} / \mathrm{D}=1,326$
$>\mathrm{D}_{\mathrm{h}}=11,8 \mathrm{~mm}, \mathrm{Re}_{\mathrm{h}}=40000$
$\rightarrow \mathrm{U}_{\mathrm{b}}=3,24 \mathrm{~m} . \mathrm{s}^{-1}$
$>$ Standard numerical options (constant inlet)

Main parameters

Outlet

Full-hexa mesh with ICEM-CFD 8 million cells

First LES through a 2×2 mixing grid

Time $=3.7504 \mathrm{~s}$

$$
\left(m_{a d d}+\frac{\lambda L}{2}\right) \frac{d^{2} a_{n}}{d t^{2}}+\frac{n^{4} \pi^{4} E I}{2 L^{3}} a_{n}=F_{n}(t)
$$

First LES through a 2×2 mixing grid

\square LES seems reliable, the qualitative results are satisfactory (displacement of few microns)

- Need for validation

First LES through a 2×2 mixing grid

- Observation : RANS models underestimate the turbulent kinetic energy on this case

LES/URANS through 5x5 mixing grid - KAERI grid

- KAERI experiment MATHIS-H (horizontal)
- Benchmark organized by OECD
\square Split-type vane, 5×5 mixing grid, scale 2.67
\square Few doubts about the symmetry of the configuration (the grid is too close to the outlet)

LES/URANS through 5x5 mixing grid - KAERI grid

- Reynolds number $\mathrm{Re}_{\mathrm{H}}=50000$
- 62 Million cells

LES/URANS through 5x5 mixing grid - KAERI grid

\square LES (Dynamic or Wale) with the pure centered scheme gives the best compromise

- Wale model seems at first sight better than the dynamic model
- LES with Second Order Linear Upwind and URANS (SSG $2^{\text {nd }}$ moment closure) both overestimate the deficit of the stream-wise velocity

LES/URANS through 5x5 mixing grid - KAERI grid

LES/URANS through 5x5 mixing grid - KAERI grid

LES/URANS through 5x5 mixing grid - KAERI grid

LES/URANS through 5x5 mixing grid - KAERI grid
 $$
z=0.5 D_{H}
$$

$3.617 \mathrm{e}-04$
\square LES with a pure centered scheme is the only one showing a split-like vane behavior with the turbulent kinetic energy

LES/URANS through 5x5 mixing grid - KAERI grid

$$
\mathrm{z}=0.5 \mathrm{D}_{\mathrm{H}}
$$

$1.932 \mathrm{e}-01$
$1.451 \mathrm{e}-01$
$9.705 \mathrm{e}-02$
$4.900 \mathrm{e}-02$
$9.401 \mathrm{e}-04$

$1.700 \mathrm{e}-01$
$1.286 \mathrm{e}-01$
$8.725 \mathrm{e}-02$
$4.588 \mathrm{e}-02$
$4.510 \mathrm{e}-03$

RANS simulation through a 5×5 mixing grid

[This is a part of a benchmark organized by EPRI (Manivel experiment conducted at EDF)

Orientation O1
38.05 mm

Fully hex mesh

RANS simulation through a 5×5 mixing grid

Main characteristics :

$\mathrm{Re}_{\mathrm{H}}=100000$
Bulk velocity : $\mathrm{U}_{\mathrm{b}}=6,8 \mathrm{~m} / \mathrm{s}$
Hydraulic diameter $D_{H}=11,78 \mathrm{~mm}$
Span h $=279 \mathrm{~mm}$
Turbulence model : RANS (1 $1^{\text {st }}$ and $2^{\text {nd }}$ moment closures)

Number of cells : 160 Millions (unaffordable in URANS and LES)

Steady Algorithm (time step variable in space and time)

CPU Time ~ 60h (2048 proc BG/P)

RANS simulation through a 5×5 mixing grid

$\square 2$ types of junctions between the two different grids :
a conforming junction with mixed elements (hex, tets and pyramids a Non-conforming junction

Conforming junction

Turbulent kinetic energy evolution

RANS simulation through a 5×5 mixing grid

- Results with $2^{\text {nd }}$ moment closure and a standard wall function with 1 velocity scale
- Global underestimation of the headloss coefficient except for the bare bundle
- Same results with the two types of junction

RANS simulation through a 5×5 mixing grid

	Exp	RSM 1 scale	$k-\varepsilon 2$ scales	k- 1 scale	RSM 2 scales	k $\omega-$ SST
DPM1	1,628	1,361	1,107	1,412	1,011	1,115
DPM2	0,570	0,573	0,417	0,584	0,387	0,444
DPM3	1,606	1,391	1,089	1,440	0,993	1,126
DPM4	0,813	0,678	0,562	0,708	0,521	0,554
DPM5	1,621	1,391	1,089	1,440	0,993	1,126
DPM6	0,782	0,678	0,562	0,708	0,521	0,554

- Sensitivity to the turbulence model and wall functions
- 1 scale results are closer to the experimental data
\square Is this phenomena due to the junctions?

RANS simulation through a 5×5 mixing grid

- With only simple grids (conforming mesh), the results concerning the under-estimation of the head-loss coefficient are worse! And there is still an underestimation with the wall function using 2 scales ...

	Exp	K	Error $(\%)$
DPM1	0,96	0,62	$-35,31$
DPM2	0,96	0,62	$-35,09$
DPM3	0,93	0,62	$-33,51$
DPM4	0,96	0,62	$-35,53$
DPM5	0,94	0,62	$-34,14$
DPM6	0,92	0,62	$-32,72$

	Exp	Calc. Ref.	k- ε	$k \omega-$ SST	RSM 2 scales	RSM SWF
DPM1	0,948	0,67	0,67	0,67	0,63	0,63
DPM2	0,958	0,67	0,67	0,67	0,63	0,63
DPM3	0,943	0,67	0,67	0,67	0,63	0,63
DPM4	0,964	0,67	0,67	0,67	0,63	0,63
DPM5	0,950	0,67	0,67	0,67	0,63	0,63
DPM6	0,925	0,67	0,67	0,67	0,63	0,63

Conclusions and perspectives

- RANS does not seem adequate to predict the flow through mixing grids (neither for head-loss coefficient nor for turbulent kinetic energy level)
- URANS might be used (good qualitative behavior) but given an overestimation of the turbulent kinetic energy what is not suitable if one expects to study vibrations or heat transfer
- LES with a pure centered scheme and a dynamic Smagorinsky model gave the best quantitative results for the KAERI grid used during the OECD benchmark
- LES gave good qualitative behavior for vibration predictions
- More validation is still needed in particular concerning the pressure along the rods

